Horizontal Transfer of the Salmonella enterica Serovar Infantis Resistance and Virulence Plasmid pESI to the Gut Microbiota of Warm-Blooded Hosts

نویسندگان

  • Gili Aviv
  • Galia Rahav
  • Ohad Gal-Mor
چکیده

UNLABELLED Salmonella enterica serovar Infantis is one of the prevalent salmonellae worldwide. Recently, we showed that the emergence of S Infantis in Israel was facilitated by the acquisition of a unique megaplasmid (pESI) conferring multidrug resistance and increased virulence phenotypes. Here we elucidate the ecology, transmission properties, and regulation of pESI. We show that despite its large size (~280 kb), pESI does not impose a significant metabolic burden in vitro and that it has been recently fixed in the domestic S Infantis population. pESI conjugation and the transcription of its pilus (pil) genes are inhibited at the ambient temperature (27°C) and by ≥1% bile but increased under temperatures of 37 to 41°C, oxidative stress, moderate osmolarity, and the microaerobic conditions characterizing the intestinal environment of warm-blooded animals. The pESI-encoded protein TraB and the oxygen homeostasis regulator Fnr were identified as transcriptional regulators of pESI conjugation. Using the mouse model, we show that following S Infantis infection, pESI can be horizontally transferred to the gut microbiota, including to commensal Escherichia coli strains. Possible transfer, but not persistence, of pESI was also observed into Gram-positive mouse microbiota species, especially Lactobacillus reuteri Moreover, pESI was demonstrated to further disseminate from gut microbiota to S. enterica serovar Typhimurium, in the context of gastrointestinal infection. These findings exhibit the ability of a selfish clinically relevant megaplasmid to distribute to and from the microbiota and suggest an overlooked role of the microbiota as a reservoir of mobile genetic elements and intermediator in the spread of resistance and virulence genes between commensals and pathogenic bacteria. IMPORTANCE Plasmid conjugation plays a key role in microbial evolution, enabling the acquisition of new phenotypes, including resistance and virulence. Salmonella enterica serovar Infantis is one of the ubiquitous salmonellae worldwide and a major cause of foodborne infections. Previously, we showed that the emergence of S Infantis in Israel has involved the acquisition of a unique megaplasmid (pESI) conferring multidrug resistance and increased virulence phenotypes. Recently, the emergence of another S Infantis strain carrying a pESI-like plasmid was identified in Italy, suggesting that the acquisition of pESI may be common to different emergent S Infantis populations globally. Transmission of this plasmid to other strains or bacterial species is an alarming scenario. Understanding the ecology, regulation, and transmission properties of clinically relevant plasmids and the role of the microbiota in their spreading offers a new mechanism explaining the emergence of new pathogenic and resistant biotypes and may assist in the development of appropriate surveillance and prevention measures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بررسی تنوع ژنوتیپی سویه‌های بالینی سالمونلا انتریکا سروتایپ اینفنتیس به روش ریبوتایپینگ

Background and Objective: Salmonella spp. are enteric pathogens with a worldwide distribution comprising a large number of serovars characterized by different hosts and distribution. Among Salmonella spp., the number of infections and diseases caused by the serotype Salmonella enterica serovar Infantis started to increase significantly in the last decade. The aim of this study was to investigat...

متن کامل

The plasmid-encoded Ipf and Klf fimbriae display different expression and varying roles in the virulence of Salmonella enterica serovar Infantis in mouse vs. avian hosts

Salmonella enterica serovar Infantis is one of the prevalent Salmonella serovars worldwide. Different emergent clones of S. Infantis were shown to acquire the pESI virulence-resistance megaplasmid affecting its ecology and pathogenicity. Here, we studied two previously uncharacterized pESI-encoded chaperone-usher fimbriae, named Ipf and Klf. While Ipf homologs are rare and were found only in S....

متن کامل

Gut inflammation can boost horizontal gene transfer between pathogenic and commensal Enterobacteriaceae.

The mammalian gut harbors a dense microbial community interacting in multiple ways, including horizontal gene transfer (HGT). Pangenome analyses established particularly high levels of genetic flux between Gram-negative Enterobacteriaceae. However, the mechanisms fostering intraenterobacterial HGT are incompletely understood. Using a mouse colitis model, we found that Salmonella-inflicted enter...

متن کامل

Horizontal Gene Transfer of a ColV Plasmid Has Resulted in a Dominant Avian Clonal Type of Salmonella enterica Serovar Kentucky

Salmonella enterica continues to be a significant cause of foodborne gastrointestinal illness in humans. A wide variety of Salmonella serovars have been isolated from production birds and from retail poultry meat. Recently, though, S. enterica subsp. enterica serovar Kentucky has emerged as one of the prominent Salmonella serovars isolated from broiler chickens. Recent work suggests that its em...

متن کامل

Salmonella typhimurium and Salmonella enteritidis strains

Salmonella is a facultative intracellular pathogen that causes a variety of infectious diseases. The most common of such diseases is gastroenteritis, with bacterial multiplication in intestinal submucosae and diarrhea, caused by the inflammatory response and perhaps also by toxins. In specific hosts, adapted salmonellae produce systemic diseases such as typhoid and paratyphoid fevers in humans....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016